DUT GMP Semestre 2

NOM

PRENOM

DUT GMP Semestre 2

année scolaire 2015-2016

Mécanique – Devoir n° 1 modélisation et paramétrage des mécanisme et de cinématique

• Durée : 2 heures

• Documents interdits

• Calculatrice : autorisée

Rendre le sujet avec la copie

Penser à indiquer vos nom, prénom et groupe sur le sujet

1/5

L.G.

Devoir n° 1 – modélisation et cinématique

DUT GMP Semestre 2

NOM

PRENOM

• Durée : 2 heures

• Documents interdits

GROUPE

• Calculatrice : autorisée

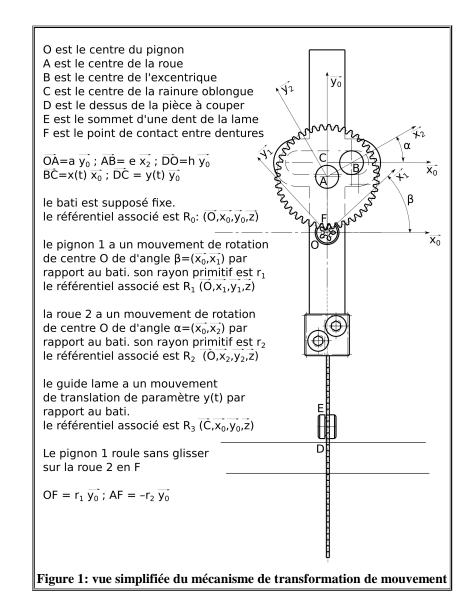
Étude d'une scie sauteuse

Le système étudié est une scie sauteuse représentée en annexes (source : eduscol STI)

Consignes

Le principe du mécanisme de transformation de mouvements est représenté sur la Figure 1.

Le paramétrage sera repris sur cette figure.

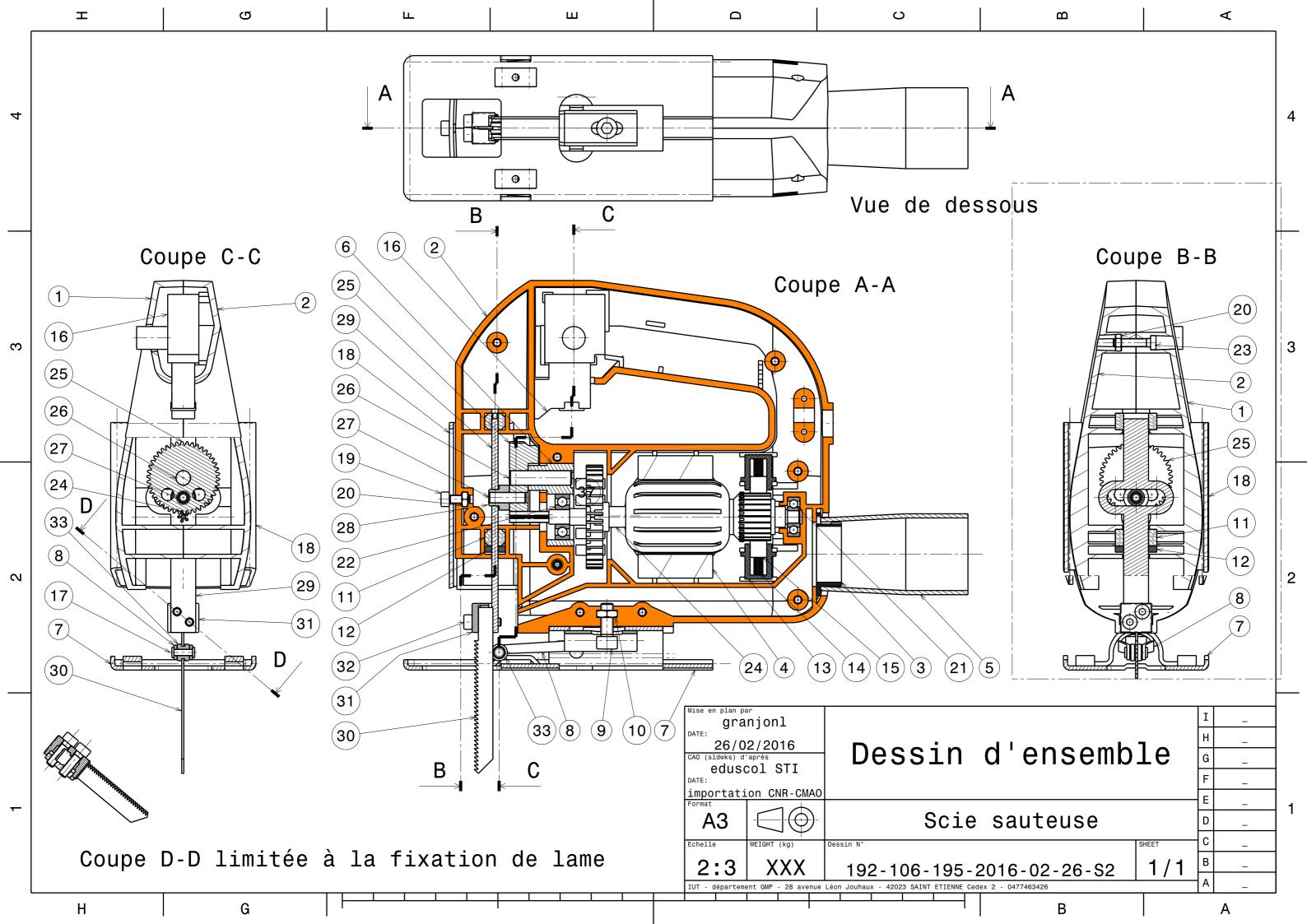

Sauf mention contraire, les calculs seront effectués de manière littérale.

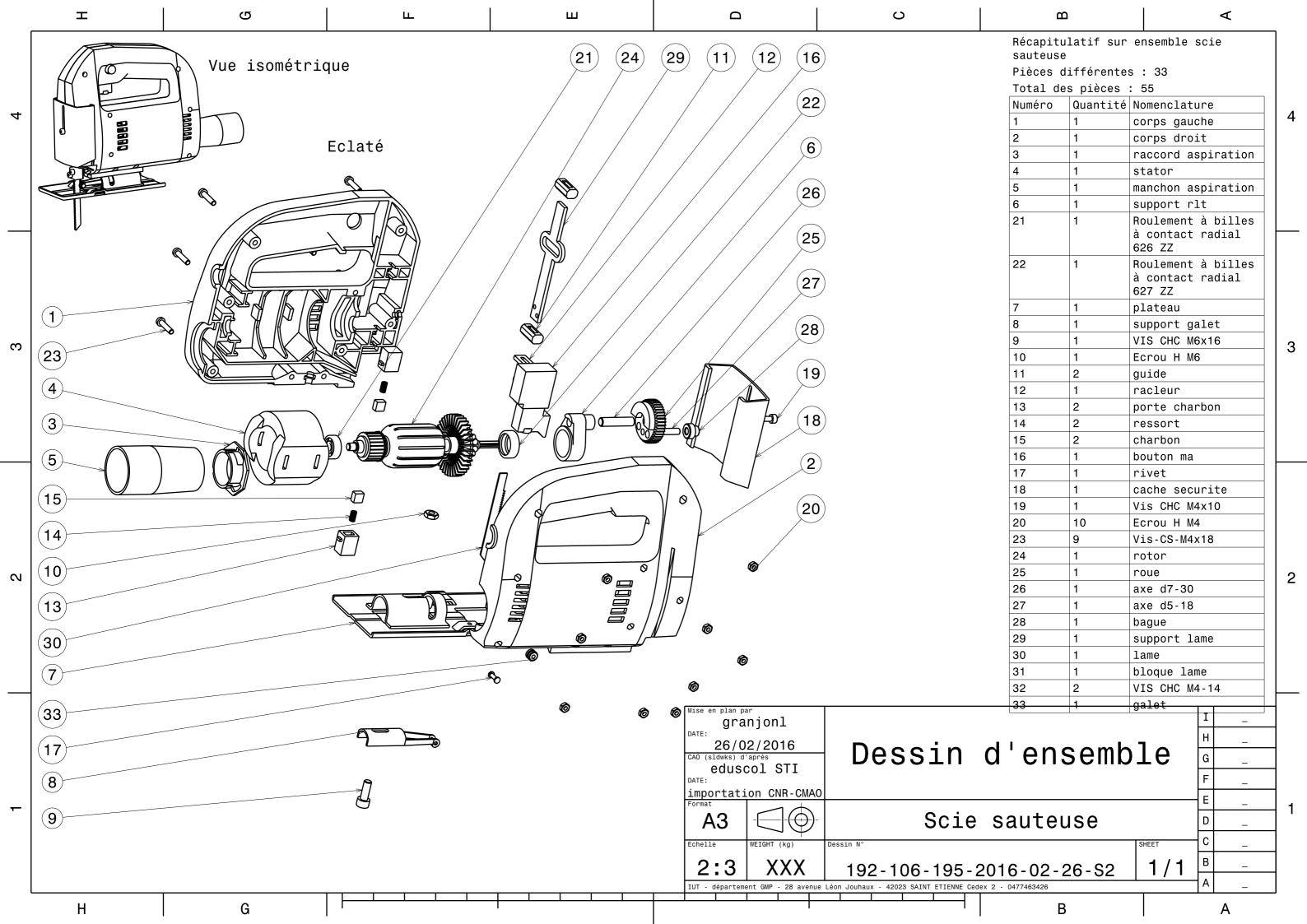
Les parties 1 et 2 sont indépendantes.

Faire toutes les hypothèses nécessaires pour compléter les données qui vous sembleraient manquantes, en les expliquant clairement.

Partie 1: modélisation

1. Chercher les classes d'équivalence de ce mécanisme en remplissant le tableau ci-dessous. Donner un nom à chaque classe d'équivalence (1 point)


Classe d'équivalence (nom)	Numéros de pièces de la classe d'équivalence
0 : Bâti	
1:	


L.G. 2/4 27 février 2016

itit

SAINT-ETIENNE	Devoir n° 1 – modélisation et cinématique	DUT GMP Semestre 2
2. Tracer le graphe d	les liaisons de ce mécanisme	(1 point)
3. Combien de mobi	lité souhaite on obtenir pour ce mécanisme. Justifier	(1 point)
•	ités internes, si oui, combien ? evement de la ou des classes d'équivalence concernées	(1 point)
5. Quel est alors le d	legré d'hyperstatisme de ce mécanisme. Justifier.	(1 point)
6. Proposer un schér	na cinématique spatial de ce mécanisme.	(2 points)
7. Proposer un schér	na cinématique plan de ce mécanisme dans le plan de la figu	re 1 (1 point)
	la figure 1 et les données associées, Exprimer la relation en s donnerez aussi la relation entre α et x(t)	tre l'angle α et la position (2 points)
	Partie 2 Cinématique	
9. Faire les schéma vecteurs taux de rota	as plan paramétrés permettant de passer de R_0 à R_1 et de ation $\Omega(1/0)$ et $\Omega(2/0)$	R_0 à R_2 . En déduire les (1 point)
10. Exprimer la vite l'exprimerez en fonc	sse du point B relativement à R_0 , résultat en projection dans tion de $\alpha(t)$	la base $(\vec{x_2}, \vec{y_2}, \vec{z})$. Vous (1 point)
	rélération du point B relativement à R_0 , résultat en perprimerez en fonction de $\alpha(t)$	projection dans la base (1 point)
12. Exprimer, en fo	onction de $y(t)$ la vitesse du point C appartenant à R_3 rel	ativement à R ₀ (0,5 pts)
13. Exprimer l'accé	élération du point C relativement au référentiel R_0 .	(1 point)
14. Exprimer le tor	seur cinématique du solide 3 relativement à R ₀ réduit au	a point C (0,5 pts)
15. Transférer ce to	orseur au point B	(0,5 pts)
16. En déduire la re	elation liant $\dot{y}(t)$ et $\dot{\alpha}(t)$	(0,5 pts)
17. La scie est don	nnée pour 2000 coups par minutes, $\frac{r1}{r2} = \frac{5}{42}$, e= 9,5 m	nm, on suppose $\ddot{a}(t)=0$
Calculer la vitesse	de coupe maximale ($max(y(t))$)	(0.5 pts)
18. Exprimer le tor	seur cinématique de la roue (associée à R2), réduit au po	oint A. (0,5 pts)
19. Déplacer ce tor en projection dans	rseur en F. En déduire la vitesse du point F appartenant la base $(\vec{x_0}, \vec{y_0}, \vec{z})$	t à R_2 relativement à R_0 , (0,5 pts)
$(\vec{x}_0, \vec{y}_0, \vec{z})$. Dépla	orseur cinématique du pignon 1 réduit au point O en cer ce torseur en F. En déduire la vitesse du point en projection dans la base $(\vec{x}_0, \vec{y}_0, \vec{z})$	
	é sur la Figure 1. le pignon 1 roule sans glisser sur la rent sans glissement et en déduire la relation liant $\dot{\alpha}(t)$ et $\dot{\beta}$	
22. Calculer la vitess	se de rotation du rotor R_1 $\dot{\beta}(t)$	(0,5 pts)
	eur de l'accélération du point B	(0.5 pts)

L.G. 3/4 27 février 2016

